Two hypergeometric summation formulae related to 9-j coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 276943
(http://iopscience.iop.org/0305-4470/27/20/029)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:56

Please note that terms and conditions apply.

COMMENT

Two hypergeometric summation formulae related to $9-j$ coefficients

Per W Karlsson
Mathematical Institute, The Technical University of Denmark, DK-2800 Lyngby, Denmark

Received 12 July 1994, in final form 14 August 1994

Abstract

Two summation formulae for special Kampe de Fériet functions $F_{1: 1}^{0: 3}$ with variables $(1,1)$ are proved.

In a recent article in this journal [3], Van der Jeugt et al, while studying 9-j coefficients, obtained several summation formulae for various Kampé de Fériet hypergeometric functions. Continuing [3], we shall give further consideration to two of these results by proving one of them and generalizing the other. Both formulae involve the Kampé de Feriet function defined by
$F_{1: 1}^{0: 3}\left[\left.\begin{array}{ccc}: a, b, c ; & a^{\prime}, b^{\prime}, c^{\prime} \mid \\ d: & e & ; \\ e^{\prime}\end{array} \right\rvert\, x, y\right]=\sum_{m, n=0}^{\infty} \frac{(a)_{m}(b)_{m}(c)_{m}\left(a^{\prime}\right)_{n}\left(b^{\prime}\right)_{n}\left(c^{\prime}\right)_{n}}{(d)_{m+n}(e)_{m}\left(e^{\prime}\right)_{n}} \frac{x^{m} y^{n}}{m!n!}$.
The region of convergence is given by $|x|<1$ and $|y|<1$; and the series is (cf [1]) absolutely convergent for $|x|=1=|y|$, provided that we have

$$
\operatorname{Re}(d+e-a-b-c)>0 \quad \wedge \quad \operatorname{Re}\left(d+e^{\prime}-a^{\prime}-b^{\prime}-c^{\prime}\right)>0
$$

Note the natural modifications if there are negative integral values of one or several numerator parameters. It is, as usual, understood that no denominator parameter is zero or a negative integer.

The two summation formulae read as follows,

$$
\begin{gather*}
F_{1: 1}^{0: 3}\left[\begin{array}{cc}
: a, b, c ; a+c+e^{\prime}-e, b+c+e^{\prime}-e,-c \mid c \\
a+b+c+e^{\prime}-e: \quad e ; & e^{\prime}
\end{array}\right] \\
=\Gamma\left[\begin{array}{c}
e, e^{\prime} \\
e-c, e^{\prime}+c
\end{array}\right] \tag{2}
\end{gather*}\left(\operatorname{Re}(e)>0, \operatorname{Re}\left(e^{\prime}\right)>0\right) .
$$

and

$$
\begin{align*}
& F_{1: 1}^{0: 3}\left[\begin{array}{cccc}
: & a,-m-p, e+m & ; & d-a, d+m+p, c^{\prime} \\
d & : & e^{2} & ; \\
d-a+p+1
\end{array}\right] \\
& =\Gamma\left[\begin{array}{c}
d-a+1,1-c^{\prime} \\
d-a+1-c^{\prime}
\end{array}\right] \frac{(d-a)_{p}(d-a+1)_{p}(a)_{m}(-1)^{m}(m+p)!}{\left(d-a+1-c^{\prime}\right)_{p}(d)_{m+p}(e)_{m} p!} \\
& \text { (} m, p \in \mathbb{N}_{0}, \operatorname{Re}\left(1-m-c^{\prime}\right)>0 \text {). } \tag{3}
\end{align*}
$$

For convenience, we use Slater's notation for a quotient of products of Gamma functions [2, section 2.1.1].

To establish these formulae, we consider the Eulerian integral representation

$$
\left.\begin{array}{rl}
\Gamma\left[\begin{array}{c}
c, e-c, \\
e
\end{array}, e^{\prime}-c^{\prime}\right. \\
e, e^{\prime}
\end{array}\right] F_{1: 1}^{0: 3}\left[\left.\begin{array}{ccc}
: a, b, c ; a^{\prime}, b^{\prime}, c^{\prime} \\
d: & e & ; \tag{4}\\
e^{\prime}
\end{array} \right\rvert\, x, y\right] .
$$

and proceed in a number of steps. First, set $x=1=y, a^{i}=d-a, b^{\prime}=d-b$, and apply the well known reduction formula

$$
F_{3}[a, d-a ; b, d-b ; d ; s, t]=(1-t)^{a+b-d}{ }_{2} F_{1}[a, b ; d ; s+t-s t] .
$$

Next, introduce new variables $\sigma=1-s, \tau=1-t$, such that the variable of the ${ }_{2} F_{1}$ is $1-\sigma \tau$, and transform to variable $\sigma \tau$ by a classical analytic continuation formula. In this way we arrive at a sum of two terms, each involving an Eulerian integral for ${ }_{4} F_{3}[1]$. In fact, we find the intermediate result,

$$
\begin{align*}
& F_{1: 1}^{0: 3}\left[\begin{array}{cc}
: a, b, c & ; d-a, d-b, c^{\prime} \mid 1,1 \\
d: & e
\end{array}\right) \\
&= \Gamma\left[\begin{array}{c}
e^{\prime}, d-a-b, d, e^{\prime}+a+b-c^{\prime}-d \\
e^{\prime}-c^{\prime}, d-a, d-b, e^{\prime}+a+b-d
\end{array}\right] \\
& \times{ }_{4} F_{3}\left[\begin{array}{c}
a, b, e-c, e^{\prime}+a+b-c^{\prime}-d \\
a+b-d+1, e, e^{\prime}+a+b-d
\end{array}\right] \\
&+\Gamma\left[\begin{array}{c}
e, d, a+b-d, e+d-a-b-c \\
e-c, a, b, e+d-a-b
\end{array}\right] \\
& \times{ }_{4} F_{3}\left[\left.\begin{array}{c}
d-a, d-b, e^{\prime}-c^{\prime}, e+d-a-b-c \mid \\
d-a-b+1, e^{\prime}, e+d-a-b
\end{array} \right\rvert\,\right. \\
&\left(\operatorname{Re}(d+e-a-b-c)>0, \operatorname{Re}\left(e^{\prime}-d+a+b-c^{\prime}\right)>0, \operatorname{Re}\left(1-d-c-c^{\prime}\right)>0\right) \tag{5}
\end{align*}
$$

In (5), we now set $c^{\prime}=-c$, and $d=a+b+c+e^{\prime}-e$. Then, the ${ }_{4} F_{3}[1]$'s become ${ }_{2} F_{1}[1]$'s, to which Gauss' summation theorem is applied. Finally, after a few further steps, including the use of elementary properties of the Gamma function, we arrive at the reduction formula (2), which was conjectured (and numerically checked) in [3], but proved only for terminating series.

To establish the reduction formula (3), we consider (5) together with a different set of conditions:

$$
-b \in \mathbb{N}_{0} \quad \wedge \quad e^{\prime}=d-a+1-b+e-c \quad \wedge \quad-(e-c) \in \mathbb{N}_{0}
$$

When we insert the first and the second of these conditions, the right-hand member of equation (5) becomes,

$$
\begin{gathered}
\Gamma\left[\begin{array}{c}
d-a-b-c+e+1, d-a-b, d, e-c-c^{\prime}+1 \\
d-a-b-c-c^{\prime}+e+1, d-a, d-b, e-c+1
\end{array}\right] \\
\times{ }_{4} F_{3}\left[\left.\begin{array}{c}
a, b, e-c, e-c-c^{\prime}+1 \\
a+b-d+1, e, e-c+1
\end{array} \right\rvert\, 1\right] .
\end{gathered}
$$

This ${ }_{4} F_{3}[1]$ is a polynomial, and we may obviously let $e-c$ tend to a non-positive integer $-m$ in each term, taking the factor $(\Gamma(e-c+1))^{-1}$ into account. As a result, only the m th term survives; and after a few more manipulations it will be seen that the expression is in fact zero for $m>-b$. We then set b equal to $-(m+p)$ and arrive at the reduction formula (3) after a few further steps. The particular case $c^{\prime}=-(m+r)$, where r is an integer, was given in [3].

The author is indebted to J Van der Jeugt for fruitful discussions in conjunction with [3] before its publication.

References

[1] H'ai N T, Marichev O I and Srivastava H M 1992 A note on the convergence of certain families of multiple hypergeometric series J. Math Anal. Appl. 164 104-15
[2] Slater L J 1966 Generalized Hypergeometric Functions (Cambridge: Cambridge University Press)
[3] Van der Jeugt J, Pitre S N and Srinivasa Rao K 1994 Multiple hypergeometric functions and 9-j coefficients J. Phys. A: Math. Gen. 27 5251-64

